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An approximate solution of the heat-transfer problem in a draining liquid film 
with a parabolic velocity profile and boundary conditions of the second kind is 
given. 

The small thickness of draining liquid films and their large surface area considerably 
facilitates thermal, diffusion, and other processes. The processes occurring in draining 
liquid films therefore have a number of technical applications and have recently been given 
considerable attention. 

Considerable mathematical difficulties arise in the analytical solution of heat-trans- 
fer problems in the initial thermal part (even assuming a plane film surface), and up till 
now only the approximate Nusselt solution [i] and the solution obtained in [2] for a con- 
stant wall temperature are known. A drawback of the solution obtained in [2] is the fact 
that it is presented in the form of an infinite series which converges slowly for large 
Peclet numbers and small values of the dimensionless longitudinal coordinate. 

Below we consider heat transfer in the initial thermal part for a laminar draining 
film along the vertical surface and for boundary conditions of the second kind. The flow 
is assumed to be hydrodynamically stabilized, the velocity profile is assumed to be parabolic, 
and the physical properties of the liquid are assumed to be constant. 

In the boundary-layerapproximation the equation of convective heat transfer with the 
corresponding initial and boundary conditions has the form 

ae ~8  
(2~-- n ~) a~ an: ' ( l )  

e (o,~l )=o,  ae(~,o) = i ,  ae(~, I) =o .  
an an (2) 

A numerical solution of problem (1), (2) was obtained in [3]. 

i. Method of Solution. The essence of the approximate method used to solve problem 
(i), (2) reduces to approximating the temperature profile by a function with unknown general- 
ized coordinates. This approach recommends itself for solving nonstationary one-dimensional 
heat-conduction problems [4, 5]. However, unlike the methods in the heat-conduction theory, 
the profile parameter is not specified arbitrarily [5] nor is it determined from the condi- 
tion for a certain functional to be stationary [6], but is found directly from the differen- 
tial equations. The latter enables the accuracy of the solution to be increased considerably. 

We will distinguish two stages of the heat-transfer process. In the first a thermal 
boundary layer develops and the temperature profile will be sought in the form 

q(D " (3)  

The f i r s t  s t a g e  i s  c o n c l u d e d  when t he  t h i c k n e s s  o f  t he  t h e r m a l  b o u n d a r y  l a y e r  r e a c h e s  q = ! .  
In  t he  s e c o n d ,  t h e r e  i s  a change  i n  t h e  t e m p e r a t u r e  on t he  f r e e  s u r f a c e  o f  t h e  f i l m ,  and the  
t e m p e r a t u r e  p r o f i l e  i s  s o u g h t  i n  t he  form 

0 = (Oj - -  02)  (1 - -  ~])n, _~ e~ .  ( 4 )  
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TABLE i. Comparison of the Average Nusselt Numbers <Nu> 

Solution 
Ours 
Numerical [3] 

6,960 
6,60 

4,829 
4,79 

3,5~ J 2,770 2,2201211~212,110 
3,43 12,83 [2,15 12,08 12,03 I 

2,083 

Hence, to determine the unknown functions q and | and the parameters nx, n2, it is 
necessary to have two equations at each stage of the heat transfer. 

2. First Stage of the Process. We have directly from Fourier's law and (3) 

Ot = q/ni. (5) 

Substituting (3) into (I), taking (5) into account, andintegrating with respect to ~ within 
the limits of the boundary layer, we obtain �9 

1 ---- nt(nt+l)  (nt+2) d~ q3 _ _ n i  + 3 q~ " (6) 

We.mul t ip ly  (1) by | and i n t e g r a t e  the  l a t t e r  equa t ion  t ak ing  (3) and (5) i n to  account  w i t h -  
in  the  same l i m i t s ,  A f t e r  a p p r o p r i a t e  t r a n s f o r m a t i o n s  we ob t a in  the  second equa t ion  

n , (n , - -  1) 1 d ( 1 ) 
2hi - -1  q----  (2h i+  1) (2n t+  2) d T  q~ 2 n t + 3  q5 . (7) 

I n t e g r a t i n g  (6) and (7) we have 

I q~, (8) nl(nt + 1)2 (nt + 2) ~ = q ~ _  h i + 3  

n t ( n t - - 1 ) ( 2 n t +  1)(2nt+2)  ~ =  4 q 3 _  5 q~. 
�9 2nj - -  1 .... - 3  4 (2n~ + 3) ( 9 )  

We expand (8) and (9) in terms of ~ and equate. Assuming q = 1 in the equations obtained, 
we finally obtain the following connection equation: 

128n~ + 94nP - -  343n~ - -  354nl - - 4 5  = 0 

with the positive root nt = 1.7552. 

The implicit relations (8) and (9) for q are inconvenient for practical use. If we 
assume that the maximum values of the coefficient of q4 on the right sides of (8) and (9) do 
.not exceed 21 and 14%, respectively, of the coefficient of q3, an explicit relationship for 
q can be obtained by the perturbation method, assuming these coefficients to be small param- 
eters. In this case we obtain a more accurate relationship from (9). Confining ourselves 
to the linear term with respect to the small parameter, we obtain from (9) 

3 ,/3 5 A~ , 
q ---- q- 16(2n, t- 3) (10) 

A:= n,(n,--1)(2ni+l)(2ni q-2) 
2n i -  1 

Comparison wi th  the  a c c u r a t e  i m p l i c i t  r e l a t i o n s h i p  (9) shows t h a t  the  maximum e r r o r  
in  de t e rmin ing  q from (10) i s  0.7T. I t  fo l lows  from (8) and (9) t h a t  the  e x t e n t  of the  
f i r s t  s t age  of  the  p roces s  ~ - - 9 . 0 8 7 .  

3. Second Stage of the  P roces s .  S u b s t i t u t i n g  (4) i n to  (1) and i n t e g r a t i n g ,  we ob t a in  

l =  d--~ (oi--o~)(n+.+l)(n.++a) T e~" (ll) 

M u l t i p l y i n g  (1) by | and i n t e g r a t i n g ,  t ak ing  (4) i n to  accoun t ,  we o b t a i n  the  second equa t ion  

@2__ n.+(@t--@2) d [ (@i--@~) ~ 2@+.(@~--@~) I @~]. ( 1 2 )  
2n~--I  ---- d~ ( 2 n ~ + l ) ( 2 n 2 + 3 )  + (n2+ 1) (a~+3)  ~ T 
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Comparing (ii) and (12), taking into account the equation n2(| -- | = i, we obtain the 
equation 

n2(n ~+ 1 ) ( n 2 + 3 )  + - T  020s 0t 2n2--1 = --if" 0~" (13) 

From (13) we obtain the connection equation 

n~+3n~--7 = 0 (14) 

with the positive root n2 = 1.5414. 

Integrating (ii), we obtain 

3 
o~ = -~ (B -- h). (15) 

Taking (15) into account, the temperature profile (4) takes the form 

..... o = I (I -- ~)n~+ _{ (~_ ~i) (16) 

n2 

4. Comparison with the Numerical Solution. To compare the solution obtained with the 
well-known numerical solution [3], we will find the local and average Nusselt numbers. The 
local Nu numbers can be found from the relation 

1 
Nu - - (17) 

Oi -- Oar 
Calculating the average temperature over the section of the film, we have from (17) for the 
first and second stages of the process, respectively, 

Nu = nt/q 1 - -  ( n l + l ) ( n t + 2 )  ( n l + l ) ( n , + 2 )  ( th+3)  q3 , (18) 

Nu=<Nu>=n2/[l-- ~ ] = 2 . 0 8 3 .  (19) 
(n=+ 1 (,z~+3) 

The average <Nu> numbers in the first stage of the process can be calculated from 

I Nude. <Nu> == 

0 (20) 

Evaluation of the integral in (20) gives the relation 

I 
< N u >  = T [3.3053 - 0.9626 In (0.6228 q q- 1) - 0.8520 In (0:0979q 2 

- -  0 6228q + l) - -  2.2447 arctg (10.1446 - -  3:1897q)]. (21) 

The r e s u l t s  o f  a c o m p a r i s o n  o f  t h e  a v e r a g e  <Nu>, c a l c u l a t e d  f rom Eqs .  (19) and (21) 
and f rom t h e  d a t a  g i v e n  i n  [ 3 ] ,  a r e  g i v e n  i n  T a b l e  1. In  t h e  c a l c u l a t i o n s  u s i n g  ( 2 1 ) ,  q was 
c a l c u l a t e d  f rom Eq. ( 1 0 ) .  As can  be  s e e n  f rom T a b l e  1, t h e r e  i s  good a g r e e m e n t  b e t w e e n  t h e  
d a t a  o v e r  t h e  whole  r a n g e  o f  ~, which  c o n f i r m s  t h e  a c c u r a c y  o f  t h e  s o l u t i o n  o b t a i n e d .  We 
a l s o  n o t e  t h a t  i n  [7] f o r  s t a b i l i z e d  h e a t  t r a n s f e r  a v a l u e  < N u > = 2 . 0 6 3  was o b t a i n e d .  

As shown i n  [ 3 ] ,  t h e  e x p e r i m e n t a l  v a l u e s  o f  <Nu> f rom some e x p e r i m e n t s  a r e  m10-20% 
g r e a t e r  t h a n  t h e  t h e o r e t i c a l  v a l u e s .  T h i s  i s  u s u a l l y  e x p l a i n e d  by  t h e  e f f e c t  o f  w a v i n e s s  on 
t h e  f r e e  s u r f a c e  [ 8 ] .  Th i s  i s  u n d o u b t e d l y  c o n f i r m e d  i n  [ 3 ] .  The v a r i a t i o n  i n  t h e  p h y s i c a l  
p r o p e r t i e s  o f  t b e  l i q u i d ,  p r i m a r i l y  t h e  v i s c o s i t y ,  i s  o b v i o u s l y  p a r t l y  r e s p o n s i b l e  f o r  t h e  
d i f f e r e n c e  be t ween  t h e  e x p e r i m e n t a l  and t h e o r e t i c a l  r e s u l t s .  

In conclusion, we note that the solution obtained holds for moderate temperature gra- 
dients. For considerable gradients, the heat transfer begins to depend very much on the 
value of heat flow. This problem requires special consideration. 

NOTATION 

| (t -- to)/(H6/l), dimensionless temperature; to, temperature of the liquid at the 
entrance~ @I, | dimensionless temperature of the wall and free surface; | dimensionless 
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average temperature of the liquid over the transverse cross section of the film; H, density 
of the heat flow on the wall: ~ = (x/6)Pe, ~= y/6, dimensionless coordinates; ~, thickness of 
the film; Pe=uo6/a, Peclet criterion; uo, velocity on the free surface; I, a, thermal con- 
ductivity and thermal diffusivity of the liquid; q($), thickness of the thermal boundary 
layer; n:, n2, parameters of the temperature profile in the first and second stages of the 
process; Nu =a~/l, <Nu> = <a>~/h, local and average Nusselt numbers; a, <a>, local and aver- 
age heat-transfer coefficients. 
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REFINED METHOD OF CALCULATING HEAT EXCHANGE IN THE 

CONDENSATION OF STATIONARY STEAJl ON FINNED HORIZONTAL TUBES 

V. P. Borovkov UDC 536.423.4 

A relation is Obtained for calculating theheat-transfer rate in the condensation 
of pure vapors on finned tubes with allowance for fin efficiency. 

The study of the heat-exchange laws in the condensation of vapors of liquids is direc- 
ted toward solving important practical problems of finding surfaces on which heat- and mass- 
transfer processes can occur efficiently. A certain amount Of experimental material has 
already been�9 accumulated in this direction, including data on heat exchange in the conden- 
sation of vapors of Freons II, 12, �9 and 113, and water on single horizontal tubes with 
transverse finning. These tubes have been made of different materials and have had fins 
of various geometries. The main data on the test conditions and geometrical characteris- 

tics of these tubes, including the �9 findings in [1, 2], arepresentedin Table i. These 
studies have proposed relations in the form of criterial equations, including equations 
of the Nusselt type for smooth tubes, with the introduction Of constant coefficients to 
account for the specifics of heat exchange on the fins. Analysis of these relations shows 
that they do not allow for generalization of the data of various authors which is in the 
literature. This is due to the complexity of the process of condensation on finned tubes. 
In contrast to the same process on smooth tubes, here condensation is �9 determined by several 
new factors: the geometry of the surface, the heat conductivity of the wallmaterial, and, 
as noted in certain investigations, the effect of surface tension. 

Evidently, the only way out of this dilemma is to obtain theoretical solutions and 
refine these solutions on the basis of experimental data. 
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